Design of quinonoid-enriched humic materials with enhanced redox properties.

نویسندگان

  • Irina V Perminova
  • Anton N Kovalenko
  • Philippe Schmitt-Kopplin
  • Kirk Hatfield
  • Norbert Hertkorn
  • Elena Y Belyaeva
  • Valery S Petrosyan
چکیده

The primary goal of this work was to develop quinonoid-enriched humic materials with enhanced redox properties that could be used as potentially effective redox mediators and reducing agents for in situ remediation of soil and aquatic environments. Two different strategies were formulated and tested to derive these materials. The first strategy called for the oxidation of phenolic fragments associated with the humic aromatic core. In a second strategy, polycondensation of these phenolic fragments was carried out with hydroquinone and catechol. The oxidized derivatives and copolymers obtained were characterized using elemental and functional group analyses, and capillary zone electrophoresis. The redox properties were evaluated using ESR spectrometry and reducing capacity determinations. The reducing capacities of copolymers ranged between 1 and 4 mmol/g, which were much higher than the parent material and the oxidized derivatives. Hence, preference should be given to the copolycondensation approach. The quinonoid-enriched humics are nontoxic, water soluble, and resistant to biodegradation; thus, they could be applied as soil amendments to reduce highly mobile oxoanions of heavy metals and radionuclides, or as redox mediators to enhance in situ bioremediation. Otherwise, cross-linked copolymers could be created to serve as inexpensive reductants in permeable reactive barriers designed to remove highly oxidized contaminants from polluted groundwaters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances

Low concentrations of the dissolved leonardite humic acid HuminFeed(®) (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a ...

متن کامل

Factors affecting dissolved organic matter dynamics in mixed-redox to anoxic coastal sediments

Mixed-redox (suboxic, or oscillating between oxidizing and reducing conditions) to anoxic marine sediments from the Raritan –New York Bay complex and the Inner New York Bight of the eastern U.S. were studied to investigate the factors controlling the accumulation of pore-water dissolved organic carbon (DOC). DOC increased with depth at each of four study sites, but accumulation was generally li...

متن کامل

Enhanced removal of humic acids (HAs) from aqueous solutions using MWCNTs modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1,2-diamine on Equilibrium, thermodynamic and kinetics

In this study, multi-walled carbon nanotubes modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1, 2-diamine (NBATSPED-MWCNTs) was prepared as a low-cost and non-toxic adsorbent. These  materials was characterized by different techniques such as SEM, XRD and FT-IR and subsequently was used for the removal of humic acids (HAs) from aqueous solution. The influence of various opera...

متن کامل

Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid). The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 39 21  شماره 

صفحات  -

تاریخ انتشار 2005